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Matrices coupled in a chain: Il. Spacing functions

Gilbert Mahoux, Madan Lal Mehta and Jean-Marie Normafd
CEA/Saclay, Service de Physique&drique, F-91191 Gif-sur-Yvette Cedex, France

Received 28 October 1997

Abstract. For the eigenvalues gf complex Hermitiam x n matrices coupled in a chain, we
give a method of calculating the spacing functions. This is a generalization of the one-matrix
case which has been known for a long time.

1. Introduction

Let us recall here a few facts concerning the case of one matrix. Far>an complex
Hermitian matrixA with matrix elements probability density expfr V (A)], the probability

density of its eigenvalues := {x1, xo, ..., x,,} is [1]
F(x) x exp[ - Z V(xj)] l_[ (xj — x;)? (1.12)
j=1 1<i<j<n
oc detlK (xi, )i jot.n (1.10)

whereV (x) is a real polynomial of even order, the coefficient of the highest power being
positive; K (x, y) is defined by
_ 1 1 =1
K(x,y) i=exp| =5V = 5V ; i PORO) (1.2)

P;(x) is a real polynomial of degreeand the polynomials are chosen orthogonal with the
weight expEV (x)],

/ P;(x) Pj(x) exp[-V (x)]dx = h;§;;. (1.3)

Here and in what follows, all the integrals are taken fremo to o0, unless explicitly
stated otherwise.

The correlation functiorR; (x1, . .., xi), i.e. the density of ordered sets/ogigenvalues
within small intervals aroundy, ..., x;, ignoring the other eigenvalues, is
n:
Ri(x1,...,xp) = —/F(a:)dxk+1...dx,,
(n—k)!
= det[K (x;, x;)]i j=1,..- (1.4)
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The spacing functionE(k, I), i.e. the probability that a chosen domalncontains
exactlyk eigenvalueg0 < k < n), is

| k n
E(k, 1) ZZM/F@)[HX(M)}[ 1_[ [1_X(xj)]:|dxl---dxn
j=

j=k+1
1/dY
=—|(—) Rz, I 15
! (dz) (e )’1_-1 (15)
where x (x) is the characteristic function of the domain
=10 otherwise '

and R(z, I) is the generating function of the integrals ovenf the correlation functions
Rk(xl, ey xk),

Rz, I) = / F(x) l_[[l +zx(x)]dx; = Z %zk .7
j=1 k=0
1 k=0

= k 1.8
Pk / Ri(x1, ..., x) l_[ x (x;) dx; otherwise. (1.8)
j=1

J

The R(z, I) of equation (1.7) can be expressed as a determinant
R(z, I) = det[G;;]i j=o...n-1 (1.9

.....

where, using the orthogonality, equation (1.3), of polynomi&léx) and splitting the
constant and linear terms in G;; reads

Gij = hi / Pi(x) P;(x) exp[=V (O)][1 + zx ()] dx = &;; + Gj. (1.10)

1
Finally, R(z, I) can also be written as the Fredholm determinant

n

R(z, 1) =] [ + MG, D] (1.11)
k=1

of the integral equation

/ NG, y)f () dy = Af () (1.12)

where, remarkably, the kerneN(x,y) is simply zK(x,y)x(y) with K(x,y) of
equation (1.2). The\;(z, I) are the eigenvalues of the above equation and also of the
matrix [G;;].

These results can be extended to a chaip @omplex Hermitiam x n matrices. We
consider the probability density for their elements

F(A1, -+, Ap) o expl—tr{3Vi(A1) + Va(A2) + -+ + Vp_1(Ap_1) + 3V, (Ap))]
X exp[tr{clAlAz + cpA2Az+ -+ Cp—lAp—lAp}]- (113)

Here V;(x) are real polynomials of even order with positive coefficients of their highest
power and thec; are real constants such that all the integrals which follow converge.
For eachj the eigenvalues of the matrix; are real and will be denoted by; := {x;1,
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Xj2, ..., Xjx}. The probability density for the eigenvalues of all thematrices resulting
from equation (1.13) is [2-5]

F(.’B]_; cees xp) =C exp[ - Z{%Vl(xlr) + V2(x2r) +--+ Vp—l(xp—lr) + %Vp(xpr)}]

r=1

x [ [T o —xlr)(x,,s—xpr)} det[g>*>] det[e2>*>] . .. det[gr1-+"]

1<r<s<n
(1.14)
p—1
= C[ [T O—x)p — xp,>] [ [ ] dethwr (e, xic410)]rs=1.... } (1.15)
1<r<s<n k=1
where
we(x, y) = expl—3Vi(x) — 3 Vir1(y) + cixy] (1.16)

and C is a normalization constant such that the integraFobver all thenp variablesx;,
is one.
The correlation function

Riy, e, (X105 - oy X5 o5 XpLy o5 Xpk,) Z=fF(w1;-. :vp)]_[[(n_k), ]_[ dxjr_,}

ri=kj+1
(1.17)

was calculated in a previous paper [6] to berarx m determinantiy = ky + - - - + k)
Rigoky (X100 + ooy X2kys 23 Xpls oo vy Xpk, ) = A€UKG (Xirs Xj5)]ij=1... pir=1.... kis=1....k; - (1.18)
This is the density of ordered sets bf eigenvalues ofd; within small mtervals around
Xj1, ..., X, for j=1,2,..., p. The expression oK;; is recalled at the end of section 2.

Here we will consider the spacing functidfky, I1; .. .; kp, I,,), i.€. the probability that
the domain/; contains exactly; eigenvalues of the matrit; for j =1,..., p, 0< k; < n.

The domaing/; may have overlaps. As in the one-matrix case one has evidently

1\ 1 /a\"
E(k1711;~-~;kps1p)=__ B R(le11;~~-;Zp11p)

k]_! 821 kp! 32,; z==zp=—1
(1.19)
with the generating function
R(z1. Ii; ... 2p. 1) = / F(xy; ... @p) 1"[1"[[1 + 2 ()1 (1.20)
j=1lr=
. 2\ Pk ,
=YY ey (1.21)
fa—0 k,=0 10 ... Kp:
where pgo...0 = 1 and otherwise
Pky..ky = [[ dejr]Rkl ..... Ky (X105 + ooy XT3 oo o3 XpLs oo Xpk,)- (1.22)
X (x) belng the characteristic function of the domdjn equation (1.6).
The functionR(z1, I1; . . . ; 2, I,) Will be expressed as anx n determinant. It will also
be written as a Fredholm determinant, the kernel of which will now depend on the variables
71, ..., 2p and the domaingy, ..., I, in a more involved way than in the one-matrix case.

In particular, it does not have the remarkable form mentioned after equation (1.12).
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2. The generating function R(z1, I; ... ; zp, Ip)

The expression of", equation (1.15), contains a product of determinants. As the product
of differences

A@p) = [] G —x1) (2.1)

1<r<s<n

and detfv1(x1,, x25)] are completely antisymmetric and other factors in the integrand of
equation (1.20) are completely symmetric in the variables. .., x1,, one can replace
detfwi(x1,, x25)] under the integral sign in equation (1.20) by a single term, say the
diagonal one, and multiply by!. This single term is invariant under a permutation of the
variablesx;, and simultaneously the same permutation on the variablesTherefore, after
integration over the;,, r =1, ..., n, the integrand, excluding the factor detfx,,, x3,)],

is completely antisymmetric in the variables, ..., x2, and so one can replace the second
determinant detp.(x2., x3;)] by a single term, say the diagonal one, and multiply the result
by n!. In this way, under the integral sign one can replace successively each pf-the
determinants detf, (x;,, xx115)] by a single term multiplying the result each time hy

p—1 n
R(z1. Iii .1 2p. 1) = (n))"72C f A(mnA(wp)[ [ 111w xjw)}
j=1lr=1
p n
X|:Hl_[[1+Zij(Xjr)]der]. (22)

j=1lr=1

Recall that a polynomial is called monic when the coefficient of the highest power is
one. Also recall that the product of differencasxz) can be written as a determinant

A(x) = detly/ ] = det[P;_1(x;)] = det[Q; _1(x;)] (2.3)

where P;(x) and Q;(x) are arbitrary monic polynomials of degrge As usual, we will
choose these polynomials real and bi-orthogonal [6]

/ Pi(x) (w1 * wa* - xwp_1)(x, y)Qx(y) dx dy = h;dj; (2.4)
with the obvious notation
(f *x&)(x,y) =ff(x,$)g(€,y)d€- (2.5)

The conditions on the weights; which ensure the existence and uniqueness of such
polynomials are recalled in appendix A.
The normalization constand is [6],

n—1
C=m)"]]nt (2.6)
i=0

Now expand the determinant as a sum owvepermutations(i) := <0’i' ol l_ l), (i)

being its sign,

det[P, 1(x1)] = ) 7(i) Py (¥11) Py (x12) . .. P, (x12). 2.7
@)
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Doing the same thing for deff,_1(x,.)] and integrating over all thep variablesx;,;
j=1...,p,r=1,...,nin equation (2.2), one obtains
1 N
R(z1, Iis 5 2, dp) = — (2): (X):n(l)n(])Gille;zjz .Gy j,
ANV
= det[G;;]i,j—o0....n-1 (2.8)

where

1 p—1 )4
Gi; = W / Pi(x1) |: 1_[ wy (X, xk+1):| Q;(xp) |: l_[[l + Zka(xk)]dxk:|~ (2.9)
i k=1 k=1

When all thez; vanish, G;; is equal tog;; as a consequence of the bi-orthogonality,
equation (2.4), of the polynomialB;(x) and Q;(x). Let us defineG;; as follows

G,‘j = G,‘j — (Sij (210)

so that

_ 1 p-l r p
Gij = / B(m)[]‘[wk(xk,xk+1>]Qj<x,,>[]_[[1+kak<xk)] —1}[dek] (2.11)
! k=1 k=1 k=1

Any n x n determinant is the product of its eigenvalues and therefore one has

R(z1, It;...;2p, 1) = ]_[[1 + A(za, 11 s 2 1)) (2.12)
k=1
where thei(z1, 115 ...5 2p, Ip) are then roots (not necessarily distinct, either real or
pairwise complex conjugates, sing; is real) of the algebraic equation in
det[@,’j — )\,(S,‘j] =0. (213)

One can always write a Fredholm integral equation with a separable kernel whose
eigenvalues are identical to these (cf [7] for the casepof 2 matrices). Indeed, for
any eigenvalue. the system of linear equations

[uy

n—

Gij& = A& (2.14)

~.
I
o

has at least one solutiop, i = 0,...,n — 1, not all zero. Multiplying both sides of the
above equation by);(x), summing overi and using equation (2.11) gives the Fredholm
equation

/N(x,x,,)f(xp) dx, = Af(x) (2.15)
where
n—1
) =) &0 (2.16)
=0

n—1 1 p—1
N(x,xp) =) e Qe / Pe(xl)[]"[ w (X xkﬂ)}
=0 k=1

[ -1][]

1dxk}. (2.17)

k=1
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Hence, if A is an eigenvalue of the matrixGf,], it is also an eigenvalue of the
integral equation (2.15). Conversely, since the kerNgk, x,) is separable and since
the polynomialsQ;(x) fori = 0,...,n — 1 are linearly independent, ¥ and f(x) are,
respectively an eigenvalue and an eigenfunction of the integral equation (2.15)f then
is necessarily of the form

n—1

fO) =) &0 (2.18)

=0

and theg,, £ =0,...,n — 1, not all zero, satisfy equation (2.14). Therefarés a root of
equation (2.13).

When one considers the eigenvalues of a single matrix anywhere in the chain,
disregarding those of the other matrices, everything works as if one is dealing with the one-
matrix case and formulae (1.2), (1.5), (1.7) and (1.11) are valid with minor replacements.
Similarly, when one considers properties of the eigenvaluek @f < £ < p) matrices
situated anywhere in the chain, not necessarily consecutive, everything works as if one is
dealing with a chain of only matrices; the presence of other matrices only modifies the
couplings.

To say anything more about the general case is difficult.

WhenV;(x) = a;x?, j =1,..., p, then the polynomial®; (x) and Q;(x) are Hermite
polynomials P;(x) = H;(ax), Q;(x) = H;(Bx), the constantsx and 8 depending on the
parameters; and the couplings;. In this particular case the calculation can be pushed to
the end (see appendix B).

For the sake of completeness we repeat here the form of the ké&fpeksquation (1.18),
from [6]

Kij(x,y) = Hjj(x,y) — E;;(x,) (2.19)

where

n—1

1
H;j(x,y) = Z n /(wi * Wip1 k- x wy_1) (X, X,) Qe(x,) dx,
t=0

1<i<p
X / Pp(x1)(wy * wa - - - % wj—_1)(xg, y) drg : (2.20)
l<j<p
n—1 1
Hy(xon) = 3200 [ Plewrsw s vwp Gt 1< <p
=0

(2.21)

n—1 1 )
Hi(x,y) =) " / (Wi wiga %% wp ) (x, %) Qe(xp)dy, P(y)  1<i<p
£=0

(2.22)
n—1 1
Hpi(x, y) == Z h—ZQz(X)Pe()’) (2.23)
(=0
(Wi * Wig1 -k wj_1)(X, y) fl<i<j<p
Eii(x,y) = ) 2.24
7.3 !O otherwise. (2.24)
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Appendix A. Bi-orthogonal polynomials

Given a non-negative weight functian(x, y) we shall assume that all the integrals

= () = / wx, Yty dr dy (A1)
converge. If
G, :=dethn; ;i j=01...n (A.2)
is not zero for all non-negative integeis= 0, 1, 2, ..., then we write
[[moo mo1 ... MQu-1 1
1
Pu(x) = det| "0 Ml e Maclo X (A.3)
Gn—l
Lmu,o mp1 ... My,—1 X"
[ mo,0 mo 1 - mo
l mLo ml,l e ml’n
0,(x) = det| ... . (A.4)
Gn—l m
n-1,0 Mu—11 ... My_1,
L 1 X . x"

TheseP,(x) and 0, (x) are monic polynomials of order. Also

moo Mmo1 ... Mop-1 Mo
; 1 m m ce. Mi,_1 My
(Py(x),y)) = det| "0 L tret T =0 (A.5)
G}’l*l PN PN e e .
mupo Mp1 ... Myp—1 My

if 0 < j < n, since the determinant on the right-hand side has two identical columns.
Similarly, (x/, Q,(y)) = 0, if 0 < j < n. This implies thatP,(x) is orthogonal to all
polynomials iny of order smaller tham and Q,,(y) is orthogonal to all polynomials in

of order smaller tham. Also

hy == (Py(x), Qu(V)) = (Pa(x), ¥") = (x", Qn(y))

1
= detn; ;]i j=0.1,...n = Gu/Gn-1. (A.6)
Gn—l

The polynomialsP,(x) and Q,,(y) are bi-orthogonal. They are also unique, since if there
were two polynomialsP,(x) and R,(x) both monic and orthogonal to alp;(y) with

0 < j < n, then their difference, a polynomial of order at mast 1 will be orthogonal to
Q,(y) for 0 < j < n. Expressing this polynomial as a linear combination of #éx) and
determining the coefficients by orthogonality with ti®(y), one sees that it is identically
zero.

Appendix B. Quadratic potentials

For Vj(x) = a;x?, j =1,..., p, setting
Wapclx,y) = exp(—%ax2 - %by2 + cxy) (B.1)

one obtains according to equation (2.5) the multiplication law

1/2
JT
(Wa.b,c * Wu’,b’,c’)(-x’ Y) = (—,> Wa”,b”,c”(-xv Y) (BZ)
b+a
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where

a’'=a— ¢ ' =b — < = cc ) (B.3)

b+a b+a b+a

From equation (1.16),wx(x,y) = Wy 4...c(x.y) and repeated use of the above
multiplication law yields

W(x,y) = (wrxwz* -k wp_1)(x,y) =d X Wap(x,y) (B.4)
whereaq, b, ¢ andd are constants depending on the parameters. ., a, andcy, ..., ¢p-1.

The orthogonality relation (2.4) of the polynomials(x) and Q;(x) takes the form
[ Peow e o drdy = s (8.5)

namely the same relation as in the two-matrix case with the wéight y), an exponential
of a quadratic form inc andy. It follows that P;(x) and Q;(x) are Hermite polynomials
of x times a constant

o2\ Vz2
P = H@)  ai= (“”Zbc ) (B.6)
b — 2\ 1/2
0;(x) = Hi(Bx)  Bi= (“ T ) (B.7)
2 c YV .
N <\/%> 27 j1d. (B.8)

The eigenvalue density of the matrik, for example, ignoring the eigenvalues of other
matrices, is from equation (1.18)

n—1 1

R) = Kuslro) = 3 - B0 [ W )0,00dy
=0

21 1/2 2.2 nt 1 c J
=d (—) er” — ( > H?(ax)
b ,; hi \Vab)

2,2 L I'Ijz(ax)

1
— ie‘a
VT = 2!
which in the largen limit is a semicircle of radius/2n/a. Thus, in this particular case
of coupled matrices, one recovers Wigner's ‘semicircle law’ for the eigenvalues of a single
matrix.

The kernel of the integral equation (2.15) is given by equation (2.17) Rith), Q;(x)
andh; as given above. To go further, one has to explicitly take the donfaiméo account.

(B.9)
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