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Matrices coupled in a chain: II. Spacing functions

Gilbert Mahoux†, Madan Lal Mehta‡ and Jean-Marie Normand§
CEA/Saclay, Service de Physique Théorique, F-91191 Gif-sur-Yvette Cedex, France

Received 28 October 1997

Abstract. For the eigenvalues ofp complex Hermitiann× n matrices coupled in a chain, we
give a method of calculating the spacing functions. This is a generalization of the one-matrix
case which has been known for a long time.

1. Introduction

Let us recall here a few facts concerning the case of one matrix. For ann × n complex
Hermitian matrixA with matrix elements probability density exp[− trV (A)], the probability
density of its eigenvaluesx := {x1, x2, . . . , xn} is [1]

F(x) ∝ exp

[
−

n∑
j=1

V (xj )

] ∏
16i<j6n

(xj − xi)2 (1.1a)

∝ det[K(xi, xj )]i,j=1,...,n (1.1b)

whereV (x) is a real polynomial of even order, the coefficient of the highest power being
positive;K(x, y) is defined by

K(x, y) := exp

[
−1

2
V (x)− 1

2
V (y)

] n−1∑
i=0

1

hi
Pi(x)Pi(y) (1.2)

Pi(x) is a real polynomial of degreei and the polynomials are chosen orthogonal with the
weight exp[−V (x)],∫

Pi(x)Pj (x) exp[−V (x)] dx = hiδij . (1.3)

Here and in what follows, all the integrals are taken from−∞ to +∞, unless explicitly
stated otherwise.

The correlation functionRk(x1, . . . , xk), i.e. the density of ordered sets ofk eigenvalues
within small intervals aroundx1, . . . , xk, ignoring the other eigenvalues, is

Rk(x1, . . . , xk) := n!

(n− k)!
∫
F(x) dxk+1 . . .dxn

= det[K(xi, xj )]i,j=1,...,k. (1.4)
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The spacing functionE(k, I ), i.e. the probability that a chosen domainI contains
exactlyk eigenvalues(06 k 6 n), is

E(k, I ) := n!

k!(n− k)!
∫
F(x)

[ k∏
j=1

χ(xj )

][ n∏
j=k+1

[1− χ(xj )]
]

dx1 . . .dxn

= 1

k!

(
d

dz

)k
R(z, I )

∣∣∣∣
z=−1

(1.5)

whereχ(x) is the characteristic function of the domainI ,

χ(x) :=
{

1 if x ∈ I
0 otherwise

(1.6)

andR(z, I ) is the generating function of the integrals overI of the correlation functions
Rk(x1, . . . , xk),

R(z, I ) :=
∫
F(x)

n∏
j=1

[1+ zχ(xj )] dxj =
n∑
k=0

ρk

k!
zk (1.7)

ρk =


1 k = 0∫
Rk(x1, . . . , xk)

k∏
j=1

χ(xj ) dxj otherwise.
(1.8)

TheR(z, I ) of equation (1.7) can be expressed as a determinant

R(z, I ) = det[Gij ]i,j=0,...,n−1 (1.9)

where, using the orthogonality, equation (1.3), of polynomialsPi(x) and splitting the
constant and linear terms inz, Gij reads

Gij = 1

hi

∫
Pi(x)Pj (x) exp[−V (x)][1 + zχ(x)] dx = δij + Ḡij . (1.10)

Finally, R(z, I ) can also be written as the Fredholm determinant

R(z, I ) =
n∏
k=1

[1+ λk(z, I )] (1.11)

of the integral equation∫
N(x, y)f (y)dy = λf (x) (1.12)

where, remarkably, the kernelN(x, y) is simply zK(x, y)χ(y) with K(x, y) of
equation (1.2). Theλi(z, I ) are the eigenvalues of the above equation and also of the
matrix [Ḡij ].

These results can be extended to a chain ofp complex Hermitiann× n matrices. We
consider the probability density for their elements

F(A1, · · · , Ap) ∝ exp[−tr{ 12V1(A1)+ V2(A2)+ · · · + Vp−1(Ap−1)+ 1
2Vp(Ap)}]

× exp[tr{c1A1A2+ c2A2A3+ · · · + cp−1Ap−1Ap}]. (1.13)

Here Vj (x) are real polynomials of even order with positive coefficients of their highest
power and thecj are real constants such that all the integrals which follow converge.
For eachj the eigenvalues of the matrixAj are real and will be denoted byxj := {xj1,
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xj2, . . . , xjn}. The probability density for the eigenvalues of all thep matrices resulting
from equation (1.13) is [2–5]

F(x1; . . . ;xp) = C exp

[
−

n∑
r=1

{ 12V1(x1r )+ V2(x2r )+ · · · + Vp−1(xp−1r )+ 1
2Vp(xpr)}

]
×
[ ∏

16r<s6n
(x1s−x1r )(xps−xpr)

]
det[ec1x1r x2s ] det[ec2x2r x3s ] . . .det[ecp−1xp−1r xps ]

(1.14)

= C
[ ∏

16r<s6n
(x1s − x1r )(xps − xpr)

][ p−1∏
k=1

det[wk(xkr , xk+1s)]r,s=1,...,n

]
(1.15)

where

wk(x, y) := exp[− 1
2Vk(x)− 1

2Vk+1(y)+ ckxy] (1.16)

andC is a normalization constant such that the integral ofF over all thenp variablesxir
is one.

The correlation function

Rk1,...,kp (x11, . . . , x1k1; . . . ; xp1, . . . , xpkp ) :=
∫
F(x1; . . . ;xp)

p∏
j=1

[
n!

(n− kj )!
n∏

rj=kj+1

dxjrj

]
(1.17)

was calculated in a previous paper [6] to be anm×m determinant (m = k1+ · · · + kp)

Rk1,...,kp (x11, . . . , x1k1; . . . ; xp1, . . . , xpkp ) = det[Kij (xir , xjs)]i,j=1,...,p;r=1,...,ki ;s=1,...,kj . (1.18)

This is the density of ordered sets ofkj eigenvalues ofAj within small intervals around
xj1, . . . , xjkj for j = 1, 2, . . . , p. The expression ofKij is recalled at the end of section 2.

Here we will consider the spacing functionE(k1, I1; . . . ; kp, Ip), i.e. the probability that
the domainIj contains exactlykj eigenvalues of the matrixAj for j = 1, . . . , p, 06 kj 6 n.
The domainsIj may have overlaps. As in the one-matrix case one has evidently

E(k1, I1; . . . ; kp, Ip) = 1

k1!

(
∂

∂z1

)k1

· · · 1

kp!

(
∂

∂zp

)kp
R(z1, I1; . . . ; zp, Ip)

∣∣∣∣
z1=···=zp=−1

(1.19)

with the generating function

R(z1, I1; . . . ; zp, Ip) =
∫
F(x1; . . . ;xp)

p∏
j=1

n∏
r=1

[1+ zjχj (xjr )]dxjr (1.20)

=
n∑

k1=0

· · ·
n∑

kp=0

ρk1,...,kp

k1! . . . kp!
z
k1
1 . . . z

kp
p (1.21)

whereρ0,0,...,0 = 1 and otherwise

ρk1,...,kp =
p∏
j=1

[ ∫
Ij

kj∏
r=1

dxjr

]
Rk1,...,kp (x11, . . . , x1k1; . . . ; xp1, . . . , xpkp ). (1.22)

χj (x) being the characteristic function of the domainIj , equation (1.6).
The functionR(z1, I1; . . . ; zp, Ip) will be expressed as ann×n determinant. It will also

be written as a Fredholm determinant, the kernel of which will now depend on the variables
z1, . . . , zp and the domainsI1, . . . , Ip in a more involved way than in the one-matrix case.
In particular, it does not have the remarkable form mentioned after equation (1.12).
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2. The generating functionR(z1, I1; . . . ; zp, Ip)

The expression ofF , equation (1.15), contains a product of determinants. As the product
of differences

1(x1) =
∏

16r<s6n
(x1s − x1r ) (2.1)

and det[w1(x1r , x2s)] are completely antisymmetric and other factors in the integrand of
equation (1.20) are completely symmetric in the variablesx11, . . . , x1n, one can replace
det[w1(x1r , x2s)] under the integral sign in equation (1.20) by a single term, say the
diagonal one, and multiply byn!. This single term is invariant under a permutation of the
variablesx1r and simultaneously the same permutation on the variablesx2r . Therefore, after
integration over thex1r , r = 1, . . . , n, the integrand, excluding the factor det[w2(x2r , x3s)],
is completely antisymmetric in the variablesx21, . . . , x2n and so one can replace the second
determinant det[w2(x2r , x3s)] by a single term, say the diagonal one, and multiply the result
by n!. In this way, under the integral sign one can replace successively each of thep − 1
determinants det[wk(xkr , xk+1s)] by a single term multiplying the result each time byn!

R(z1, I1; . . . ; zp, Ip) = (n!)p−1C

∫
1(x1)1(xp)

[ p−1∏
j=1

n∏
r=1

wj(xjr , xj+1r )

]
×
[ p∏
j=1

n∏
r=1

[1+ zjχj (xjr )]dxjr
]
. (2.2)

Recall that a polynomial is called monic when the coefficient of the highest power is
one. Also recall that the product of differences1(x) can be written as a determinant

1(x) = det[xj−1
i ] = det[Pj−1(xi)] = det[Qj−1(xi)] (2.3)

wherePj (x) andQj(x) are arbitrary monic polynomials of degreej . As usual, we will
choose these polynomials real and bi-orthogonal [6]∫

Pj (x)(w1 ∗ w2 ∗ · · · ∗ wp−1)(x, y)Qk(y) dx dy = hjδjk (2.4)

with the obvious notation

(f ∗ g)(x, y) =
∫
f (x, ξ)g(ξ, y)dξ. (2.5)

The conditions on the weightswi which ensure the existence and uniqueness of such
polynomials are recalled in appendix A.

The normalization constantC is [6],

C = (n!)−p
n−1∏
i=0

h−1
i . (2.6)

Now expand the determinant as a sum overn! permutations(i) :=
(

0, . . . , n− 1
i1, . . . , in

)
, π(i)

being its sign,

det[Ps−1(x1r )] =
∑
(i)

π(i)Pi1(x11)Pi2(x12) . . . Pin(x1n). (2.7)
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Doing the same thing for det[Qs−1(xpr)] and integrating over all thenp variablesxjr ;
j = 1, . . . , p; r = 1, . . . , n in equation (2.2), one obtains

R(z1, I1; . . . ; zp, Ip) = 1

n!

∑
(i)

∑
(j)

π(i)π(j)Gi1j1Gi2j2 . . . Ginjn

= det[Gij ]i,j=0,...,n−1 (2.8)

where

Gij = 1

hi

∫
Pi(x1)

[ p−1∏
k=1

wk(xk, xk+1)

]
Qj(xp)

[ p∏
k=1

[1+ zkχk(xk)]dxk
]
. (2.9)

When all thezk vanish,Gij is equal toδij as a consequence of the bi-orthogonality,
equation (2.4), of the polynomialsPi(x) andQj(x). Let us defineḠij as follows

Ḡij := Gij − δij (2.10)

so that

Ḡij = 1

hi

∫
Pi(x1)

[ p−1∏
k=1

wk(xk, xk+1)

]
Qj(xp)

[ p∏
k=1

[1+ zkχk(xk)] − 1

][ p∏
k=1

dxk

]
. (2.11)

Any n× n determinant is the product of itsn eigenvalues and therefore one has

R(z1, I1; . . . ; zp, Ip) =
n∏
k=1

[1+ λk(z1, I1; . . . ; zp, Ip)] (2.12)

where theλk(z1, I1; . . . ; zp, Ip) are then roots (not necessarily distinct, either real or
pairwise complex conjugates, sinceḠij is real) of the algebraic equation inλ

det[Ḡij − λδij ] = 0. (2.13)

One can always write a Fredholm integral equation with a separable kernel whose
eigenvalues are identical to these (cf [7] for the case ofp = 2 matrices). Indeed, for
any eigenvalueλ the system of linear equations

n−1∑
j=0

Ḡij ξj = λξi (2.14)

has at least one solutionξi , i = 0, . . . , n − 1, not all zero. Multiplying both sides of the
above equation byQi(x), summing overi and using equation (2.11) gives the Fredholm
equation ∫

N(x, xp)f (xp) dxp = λf (x) (2.15)

where

f (x) :=
n−1∑
`=0

ξ`Q`(x) (2.16)

N(x, xp) :=
n−1∑
`=0

1

h`
Q`(x)

∫
P`(x1)

[ p−1∏
k=1

wk(xk, xk+1)

]

×
[ p∏
k=1

[1+ zkχk(xk)] − 1

][ p−1∏
k=1

dxk

]
. (2.17)
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Hence, if λ is an eigenvalue of the matrix [Ḡij ], it is also an eigenvalue of the
integral equation (2.15). Conversely, since the kernelN(x, xp) is separable and since
the polynomialsQi(x) for i = 0, . . . , n − 1 are linearly independent, ifλ and f (x) are,
respectively an eigenvalue and an eigenfunction of the integral equation (2.15), thenf (x)

is necessarily of the form

f (x) =
n−1∑
`=0

ξ`Q`(x) (2.18)

and theξ`, ` = 0, . . . , n− 1, not all zero, satisfy equation (2.14). Thereforeλ is a root of
equation (2.13).

When one considers the eigenvalues of a single matrix anywhere in the chain,
disregarding those of the other matrices, everything works as if one is dealing with the one-
matrix case and formulae (1.2), (1.5), (1.7) and (1.11) are valid with minor replacements.
Similarly, when one considers properties of the eigenvalues ofk (1 6 k 6 p) matrices
situated anywhere in the chain, not necessarily consecutive, everything works as if one is
dealing with a chain of onlyk matrices; the presence of other matrices only modifies the
couplings.

To say anything more about the general case is difficult.
WhenVj (x) = ajx2, j = 1, . . . , p, then the polynomialsPj (x) andQj(x) are Hermite

polynomialsPj (x) = Hj(αx), Qj(x) = Hj(βx), the constantsα andβ depending on the
parametersaj and the couplingscj . In this particular case the calculation can be pushed to
the end (see appendix B).

For the sake of completeness we repeat here the form of the kernelsKij , equation (1.18),
from [6]

Kij (x, y) := Hij (x, y)− Eij (x, y) (2.19)

where

Hij (x, y) :=
n−1∑
`=0

1

h`

∫
(wi ∗ wi+1 ∗ · · · ∗ wp−1)(x, xp)Q`(xp) dxp

×
∫
P`(x1)(w1 ∗ w2 ∗ · · · ∗ wj−1)(x1, y)dx1

{
16 i < p

1< j 6 p
(2.20)

Hpj (x, y) :=
n−1∑
`=0

1

h`
Q`(x)

∫
P`(x1)(w1 ∗ w2 ∗ · · · ∗ wp−1)(x1, y)dx1 1< j 6 p

(2.21)

Hi1(x, y) :=
n−1∑
`=0

1

h`

∫
(wi ∗ wi+1 ∗ · · · ∗ wp−1)(x, xp)Q`(xp) dxp P`(y) 16 i < p

(2.22)

Hp1(x, y) :=
n−1∑
`=0

1

h`
Q`(x)P`(y) (2.23)

Eij (x, y) :=
{
(wi ∗ wi+1 ∗ · · · ∗ wj−1)(x, y) if 1 6 i < j 6 p
0 otherwise.

(2.24)
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Appendix A. Bi-orthogonal polynomials

Given a non-negative weight functionw(x, y) we shall assume that all the integrals

mi,j := 〈xi, yj 〉 =
∫
w(x, y)xiyj dx dy (A.1)

converge. If

Gn := det[mi,j ]i,j=0,1,...,n (A.2)

is not zero for all non-negative integersn = 0, 1, 2, . . . , then we write

Pn(x) := 1

Gn−1
det


m0,0 m0,1 . . . m0,n−1 1
m1,0 m1,1 . . . m1,n−1 x

. . . . . . . . . . . . .

mn,0 mn,1 . . . mn,n−1 xn

 (A.3)

Qn(x) := 1

Gn−1
det


m0,0 m0,1 . . . m0,n

m1,0 m1,1 . . . m1,n

. . . . . . . . . . . .

mn−1,0 mn−1,1 . . . mn−1,n

1 x . . . xn

 . (A.4)

ThesePn(x) andQn(x) are monic polynomials of ordern. Also

〈Pn(x), yj 〉 = 1

Gn−1
det


m0,0 m0,1 . . . m0,n−1 m0,j

m1,0 m1,1 . . . m1,n−1 m1,j

. . . . . . . . . . . . .

mn,0 mn,1 . . . mn,n−1 mn,j

 = 0 (A.5)

if 0 6 j < n, since the determinant on the right-hand side has two identical columns.
Similarly, 〈xj ,Qn(y)〉 = 0, if 0 6 j < n. This implies thatPn(x) is orthogonal to all
polynomials iny of order smaller thann andQn(y) is orthogonal to all polynomials inx
of order smaller thann. Also

hn := 〈Pn(x),Qn(y)〉 = 〈Pn(x), yn〉 = 〈xn,Qn(y)〉
= 1

Gn−1
det[mi,j ]i,j=0,1,...,n = Gn/Gn−1. (A.6)

The polynomialsPn(x) andQn(y) are bi-orthogonal. They are also unique, since if there
were two polynomialsPn(x) and Rn(x) both monic and orthogonal to allQj(y) with
06 j < n, then their difference, a polynomial of order at mostn− 1 will be orthogonal to
Qj(y) for 06 j 6 n. Expressing this polynomial as a linear combination of thePj (x) and
determining the coefficients by orthogonality with theQj(y), one sees that it is identically
zero.

Appendix B. Quadratic potentials

For Vj (x) = ajx2, j = 1, . . . , p, setting

Wa,b,c(x, y) := exp(− 1
2ax

2− 1
2by

2+ cxy) (B.1)

one obtains according to equation (2.5) the multiplication law

(Wa,b,c ∗Wa′,b′,c′)(x, y) =
(

2π

b + a′
)1/2

Wa′′,b′′,c′′(x, y) (B.2)
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where

a′′ = a − c2

b + a′ b′′ = b′ − c′2

b + a′ c′′ = cc′

b + a′ . (B.3)

From equation (1.16),wk(x, y) = Wak,ak+1,ck (x, y) and repeated use of the above
multiplication law yields

W(x, y) := (w1 ∗ w2 ∗ · · · ∗ wp−1)(x, y) = d ×Wa,b,c(x, y) (B.4)

wherea, b, c andd are constants depending on the parametersa1, . . . , ap andc1, . . . , cp−1.
The orthogonality relation (2.4) of the polynomialsPj (x) andQj(x) takes the form∫

Pj (x)W(x, y)Qk(y) dx dy = hjδjk (B.5)

namely the same relation as in the two-matrix case with the weightW(x, y), an exponential
of a quadratic form inx andy. It follows thatPj (x) andQj(x) are Hermite polynomials
of x times a constant

Pj (x) = Hj(αx) α :=
(
ab − c2

2b

)1/2

(B.6)

Qj(x) = Hj(βx) β :=
(
ab − c2

2a

)1/2

(B.7)

hj = 2π

(ab − c2)1/2

(
c√
ab

)j
2j j !d. (B.8)

The eigenvalue density of the matrixA1, for example, ignoring the eigenvalues of other
matrices, is from equation (1.18)

R1(x) = K11(x, x) =
n−1∑
j=0

1

hj
Pj (x)

∫
W(x, y)Qj (y) dy

= d
(

2π

b

)1/2

e−α
2x2

n−1∑
j=0

1

hj

(
c√
ab

)j
H 2
j (αx)

= α√
π

e−α
2x2

n−1∑
j=0

H 2
j (αx)

2j j !
(B.9)

which in the largen limit is a semicircle of radius
√

2n/α. Thus, in this particular case
of coupled matrices, one recovers Wigner’s ‘semicircle law’ for the eigenvalues of a single
matrix.

The kernel of the integral equation (2.15) is given by equation (2.17) withPj (x), Qj(x)
andhj as given above. To go further, one has to explicitly take the domainsIj into account.
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